

NatHERS Assessment Findings Report

Based on

Cupolex' slabs' Thermal Performance

Client: Cupolex Australia

Prepared by: Jacob Guarnaccia, Wollongong Energy Efficiency

*Note, this assessment is based using the Cupolex system.

Introduction

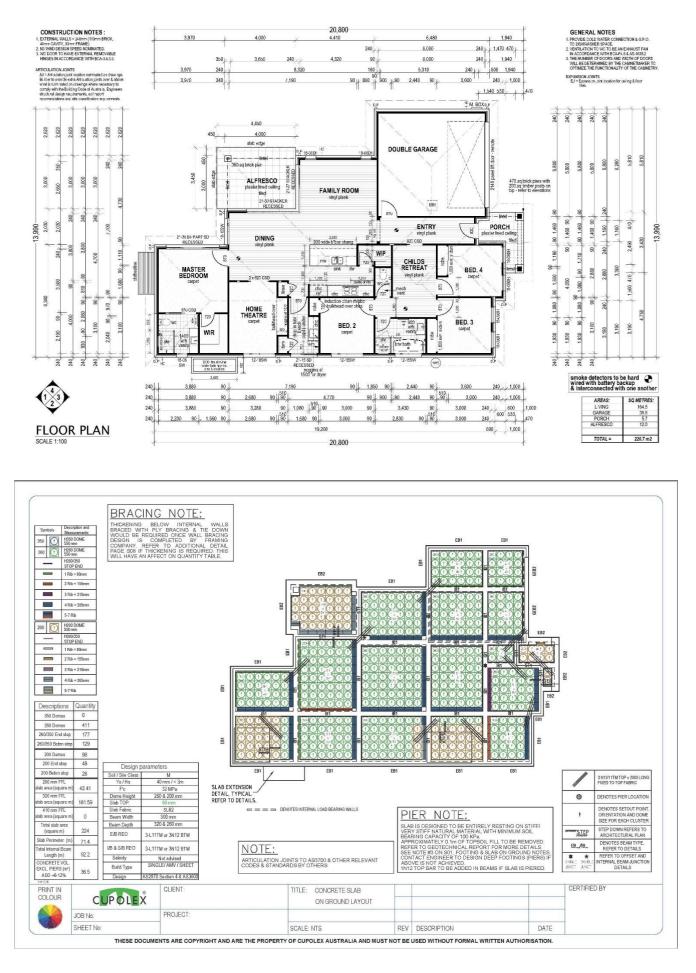
The purpose of this report is to demonstrate the difference between a standard 225mm Waffle Pod slab, a Cupolex slab and a Cupolex slab with a thermal blanket.

The two dwellings have been simulated as per the NatHERS software.

- Climate Zone 24
- Canberra, ACT 2600

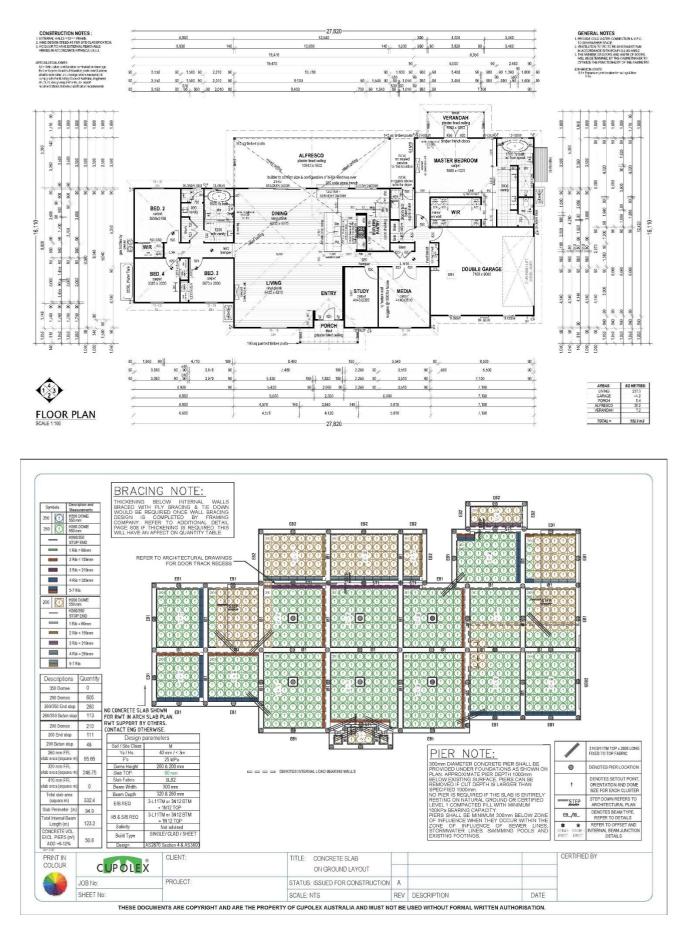
Climate Zone 24 is within a colder climate, the goal for these dwellings is to meet the heating requirements.

Both dwellings were rated using the most recent version of the software,


• FirstRate5, version 5.5.3a.

The NatHERS simulation was adhere to, ensuring the most accurate result.

For consistency purposes, the dwellings in this project were simulated with,


- R2.5 to external walls,
- R6.0 to the ceiling
- R2.5 to the roof.
- All windows are standard single glazed.

Dwelling 1:

CUPOLEX-WOLLONGONG ENERGY EFFICIENCY-THERMAL CASE STUDY DECEMBER 2023

Dwelling 2:

CUPOLEX-WOLLONGONG ENERGY EFFICIENCY-THERMAL CASE STUDY DECEMBER 2023

Modelling of Slabs:

225mm Waffle Pod:

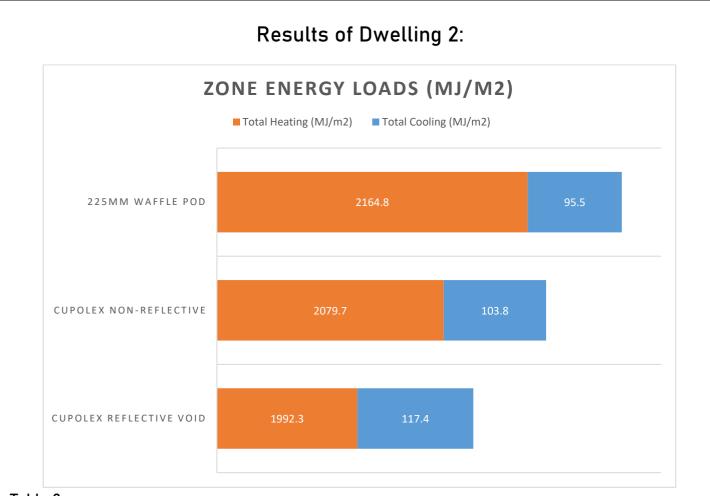
▲Тор	FR5-WafflePod-	225-100 : 225mm waffle pod, 100mm concre	ete (R0.60)
(mm)			
▼ Botto	m	Concrete: standard (2400 kg/m²)	
Floor Ty	/pe:		
Floor Co	onstruction		
	Material	Thickness (mm)	R-value
Тор	Concrete: standard (2400 kg/m²)	100	0.07
	225 mm waffle pod insulation	23	0.59
Bottom			

Cupolex H260 with non-reflective void slab:

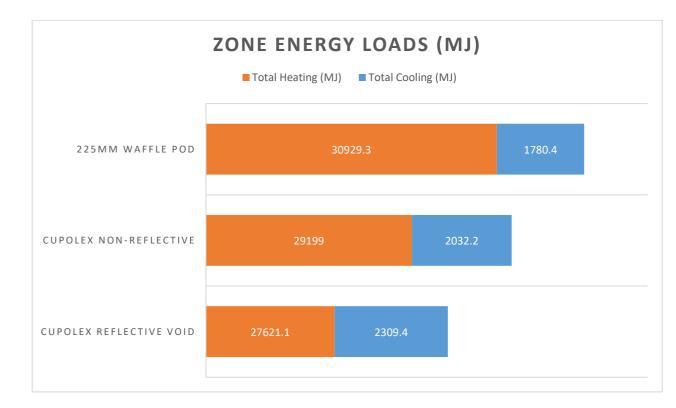
loor Builder			:
L. Give your fl	oor a name and code		
Elect Name	: CUPOLEX H260 SYSTEM	Floor Code: CHS	
HOUL Maine		Hoor Code. Chis	
2. Build up you	ır floor layers		
▲Тор		CHS : CUPOLEX H260 SYSTEM	
•	100	CHS: CUPULEX H200 STSTEM	
(mm)	A sub- bit statistical	그는 것을 잘 주지 않는 것이 같이?	
	25		
Bottom		Concrete: standard (2400 kg/m²)	
▼ Bottom		Concrete: standard (2400 kg/m²)	
▼ Bottom Add Layer	Delete Layer Up 🔺 Dou	Concrete: standard (2400 kg/m²) wn ▼ Flip & Add Insulation Laye	er
▼ Bottom Add Layer		wn ▼ Flip ♂ Add Insulation Laye	
Add Layer	Material	wn ▼ Flip ひ Add Insulation Laye Thickness (mm)	R-value
Add Layer	Material oncrete: standard (2400 kg/m²)	wn ▼ Flip & Add Insulation Laye Thickness (mm) 100	R-value
Add Layer	Material	wn ▼ Flip ひ Add Insulation Laye Thickness (mm)	R-value
Add Layer	Material oncrete: standard (2400 kg/m²)	wn ▼ Flip & Add Insulation Laye Thickness (mm) 100	R-value
Add Layer	Material oncrete: standard (2400 kg/m²)	wn ▼ Flip & Add Insulation Laye Thickness (mm) 100	R-value
Add Layer	Material oncrete: standard (2400 kg/m²)	wn ▼ Flip & Add Insulation Laye Thickness (mm) 100	R-value
Add Layer	Material oncrete: standard (2400 kg/m²)	wn ▼ Flip & Add Insulation Laye Thickness (mm) 100	R-value
Add Layer	Material oncrete: standard (2400 kg/m²)	wn ▼ Flip & Add Insulation Laye Thickness (mm) 100	R-value
Add Layer	Material oncrete: standard (2400 kg/m²)	wn ▼ Flip & Add Insulation Laye Thickness (mm) 100	R-value
Add Layer	Material oncrete: standard (2400 kg/m²)	wn ▼ Flip & Add Insulation Laye Thickness (mm) 100	R-value
Add Layer	Material oncrete: standard (2400 kg/m²)	wn ▼ Flip & Add Insulation Laye Thickness (mm) 100	R-value
Add Layer	Material oncrete: standard (2400 kg/m²) eneric resistance (k = 0, 1) our floor's default insulation	wn ▼ Flip & Add Insulation Laye Thickness (mm) 100	R-value
Add Layer	Material oncrete: standard (2400 kg/m²) eneric resistance (k = 0, 1) our floor's default insulation	wn ▼ Flip & Add Insulation Laye Thickness (mm) 100	R-value
Add Layer	Material oncrete: standard (2400 kg/m²) eneric resistance (k = 0, 1) our floor's default insulation	wn ▼ Flip & Add Insulation Laye Thickness (mm) 100	R-value

CUPOLEX-WOLLONGONG ENERGY EFFICIENCY-THERMAL CASE STUDY DECEMBER 2023

Cupolex H260 with reflective void slab:


Floor Builder			>
1. Give your floo	r a name and code		
Floor Name:	POLEX H260 SYSTEM (reflective void)	Floor Code: CHSV	
FIOOI Mame:	POLEX H200 STSTEM (reliective vold)	Hoor Code: CHSV	
2. Build up your f	floor layers		
▲Тор	CHSV	: CUPOLEX H260 SYSTEM (reflective void)	
(mm)	100		경험되었는
(mm)	103	n se strême bi en tak sin.	an an tha an an tha an
	105		
▼ Bottom		Concrete: standard (2400 kg/m²)	
Add Layer	Delete Layer Up 🔺 Down	▼ Flip ♂ Add Insulation Layer	
	Material	Thickness (mm)	R-value
Top Con	crete: standard (2400 kg/m²)	100	0.03
Gen	eric resistance (k = 0.1)	103	1.03
Bottom			
3. Add / Edit you	r floor's default insulation		
	sulation		
Edit default in			
Edit default in		OK Cancel	

The R-value of the Cupolex slabs are based on the Fricker's report dated 25/06/2020 which was conducted as per to AS/NZS 4859.1&2:2018.


The R-value of the earth has been subtracted from the Fricker's report as it is not typical to show this as per the NatHERS software calculations.

An average of the summer and winter R-values on the Fricker's report was used to show the average R-value of the slab year round.

Table 3

Table 4

Breakdown of Results:

Table 1 and Table 3 (Zone Energy Loads (MJ/m2) shows the energy required to heat and cool based on the square metres of the dwelling.

Table 2 and Table 4 shows the energy required to heat the entire dwelling.

Therefore, based on the heating and cooling requirements, the Cupolex slab with a reflective void has the best performance compared to the waffle pod & non reflective Cupolex slab. The reason is due to the higher R-value compared to the other slabs which allows the dwelling to retain heat in the colder climate.

On the other hand, the non-reflective Cupolex slab has the best cooling result due to it having a low R-value.

OVERALL "TOTAL R" (THERMALLY BRIDGED) THERMAL PERFORMANCE CALCULATIONS TO AS/NZS 4859 Parts 1 & 2:2018

The following calculations by James M Fricker Pty Ltd are based upon:

- a) AS/NZS 4859.1:2018 "Thermal insulation materials for buildings. Part 1: General criteria and technical provisions",
- b) AS/NZS 4859.2:2018 "Thermal insulation materials for buildings. Part 2: Design",
- c) the Australian Institute of Refrigeration Air-conditioning & Heating (AIRAH) Handbook (Edition 5, 2013), and (if necessary) the ASHRAE Fundamentals Handbook.

AS/NZS 4859.2:2018 is a referenced document in NCC2019 & NCC2022.

Initial results report Total R for each thermal path. These results are combined by area weighting and isothermal planes method to deduce **Overall Surface Total R**. This is per AS/NZS 4859.2:2018 Clause 4.3 – "A total resistance associated with a construction of materials, computed or measured over an area sufficient to be fully representative of the element of construction, and specified as a Total R-value, including surface film resistances and thermal bridging."

Total R-values are based on product in-service conditions in accordance with AS/NZS 4859.2:2018 including the alteration of insulation Material R for temperature, and Air Space R for temperature and infrared emittance.

Each calculation result is subject to any specific notes and assumptions listed on the calculation.

If a construction differs from the described system, the thermal resistance may be different.

All calculations were done by James M Fricker, F.AIRAH F.IEAust CPEng NER APEC Engineer IntPE(Aus), Registered Professional Engineer (Victoria PE0005355)

ENGINEERS AUSTRALIA Chartered Professional Engineer MEMBER 1179647

JAMES M FRICKER PTY LTD 54 Felix Crescent Ringwood North VIC 3134 Australia Mobile: 0414 804 097 Phone: (03) 9879 5744 fricker@optusnet.com.au http://fricker.net.au

ESTIMATION OF THE THERMAL RESISTANCE OF THE CUPOLEX® H350 SYSTEM (with reflective void above Reflecta Under-Slab)

The following uses the isothermal planes method to estimate the resulting combined R from the main thermal paths through the concrete/void CUPOLEX® system.

These values are used in typical Total R calculations to AS/NZS 4859.1&2:2018 (below).

The only insulating elements in the bare CUPOLEX® system are the reflective voids within the cups.

JMF Calc: 530f01d

				WINTER R			SU	MMER R
Centre Post	Vertical element	t, mm	k	m².K/W	Vertical element	t, mm	k	m².K/W
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.021
	380mm concrete	380	1.44	0.264	380mm concrete	380	1.44	0.264
	2mm polypropylene	2	0.25	0.008	2mm polypropylene	2	0.25	0.008
	Reflecta Under-Slab	0.2	0.2	0.001	Reflecta Under-Slab	0.2	0.2	0.001
	1000mm earth	1000	1.6	0.625	1000mm earth	1000	1.6	0.625
2%	R sum between isothermal p	lanes		0.898	R sum between isotherma	al planes		0.898
4 Corners	Vertical element	t, mm	k	m².K/W	Vertical element	t, mm	k	m².K/W
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.021
	380mm concrete	380	1.44	0.264	380mm concrete	380	1.44	0.264
	2mm polypropylene	2	0.25	0.008	2mm polypropylene	2	0.25	0.008
	Reflecta Under-Slab	0.2	0.2	0.001	Reflecta Under-Slab	0.2	0.2	0.001
	1000mm earth	1000	1.6	0.625	1000mm earth	1000	1.6	0.625
8%	R sum between isothermal p	lanes		0.898	R sum between isotherma	al planes		0.898
Central Void	Vertical element	t, mm	k	m².K/W	Vertical element	t, mm	k	m².K/W
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.021
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.021
	2mm polypropylene	2	0.25	0.008	2mm polypropylene	2	0.25	0.008
	350mm reflective air void	350	0.19	1.795	350mm reflective air void	350	0.83	0.422
	Reflecta Under-Slab	0.2	0.2	0.001	Reflecta Under-Slab	0.2	0.2	0.001
	1000mm earth	1000	1.6	0.625	1000mm earth	1000	1.6	0.625
30%	R sum between isothermal p	olanes		2.450	R sum between isotherma	al planes		1.077
Outer Void	Vertical element	t, mm	k	m².K/W	Vertical element	t, mm	k	m².K/W
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.021
	70mm concrete	70	1.44	0.049	70mm concrete	70	1.44	0.049
	2mm polypropylene	2	0.25	0.008	2mm polypropylene	2	0.25	0.008
	310mm reflective air void	310	0.18	1.762	310mm reflective air void	310	0.73	0.422
	Reflecta Under-Slab	0.2	0.2	0.001	Reflecta Under-Slab	0.2	0.2	0.001
	1000mm earth	1000	1.6	0.625	1000mm earth	1000	1.6	0.625
60%	R sum between isothermal p	olanes		2.445	R sum between isotherma	al planes		1.105
	Combined R between isothe	rmal planes		2.084	1.072			
	(= 1/(A%/Ra + B%/Rb + C%	/Rc + D%/F	Rd)					
INTERMEDIATE CALCULATION:			winter	summer				
CUPOLEX® H350 Thermal Resistance*, base R =			R2.10	R1.09				
	*combined R with 1 metre ea	arth plus top	60mm o	concrete				
Added R fro	om			winter	summer			
CUI	POLEX® H350 + Reflec	ta Under	-Slab	R1.46	R0.45			
	LUES, CUPOLEX® H350			winter	summer			
with bare floor				R1.64	R0.58			
with 6mm carp	et and 15mm underlay			R2.05	R0.99			
with 25mm mountain ash floating timber overlay			R1.80	R0.74				

NOTES

Determinations based upon AS/NZS 4859.1&2:2018, Thermal insulation materials for buildings. **Reflecta Under-Slab is a reflective damp-proofing membrane reportedly compliant with AS 2870** If 25mm of extruded polystyrene is used as slab perimeter insulation, edge heat loss will be negligible. This report may not be reproduced except in full. Results may not be quoted without reference to the assumptions. Calculated by James Fricker, F.AIRAH M.IEAust CPEng NER APEC Engineer IntPE(Aus)

Signed:

James Fricker

ESTIMATION OF THE THERMAL RESISTANCE OF THE CUPOLEX® H260 SYSTEM (with reflective void above Reflecta Under-Slab)

The following uses the isothermal planes method to estimate the resulting combined R from the main thermal paths through the concrete/void CUPOLEX® system.

These values are used in typical Total R calculations to AS/NZS 4859.1&2:2018 (below).

The only insulating elements in the bare CUPOLEX® system are the reflective voids within the cups.

JMF Calc: 530f01b

				WINTER R			SU	MMER R
Centre Post	Vertical element	t, mm	k	m².K/W	Vertical element	t, mm	k	m².K/V
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.02
	290mm concrete	290	1.44	0.201	290mm concrete	290	1.44	0.20
	2mm polypropylene	2	0.25	0.008	2mm polypropylene	2	0.25	0.00
	Reflecta Under-Slab	0.2	0.2	0.001	Reflecta Under-Slab	0.2	0.2	0.00
	1000mm earth	1000	1.6	0.625	1000mm earth	1000	1.6	0.62
2%	R sum between isothermal p	lanes		0.835	R sum between isotherma	al planes		0.83
4 Corners	Vertical element	t, mm	k	m².K/W	Vertical element	t, mm	k	m².K/V
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.02
	290mm concrete	290	1.44	0.201	290mm concrete	290	1.44	0.20
	2mm polypropylene	2	0.25	0.008	2mm polypropylene	2	0.25	0.00
	Reflecta Under-Slab	0.2	0.2	0.001	Reflecta Under-Slab	0.2	0.2	0.00
	1000mm earth	1000	1.6	0.625	1000mm earth	1000	1.6	0.62
8%	R sum between isothermal p	lanes		0.835	R sum between isotherma	al planes		0.83
Central Void	Vertical element	t, mm	k	m².K/W	Vertical element	t, mm	k	m².K/V
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.02
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.02
	2mm polypropylene	2	0.25	0.008	2mm polypropylene	2	0.25	0.00
	260mm reflective air void	260	0.15	1.713	260mm reflective air void	260	0.62	0.42
	Reflecta Under-Slab	0.2	0.2	0.001	Reflecta Under-Slab	0.2	0.2	0.00
	1000mm earth	1000	1.6	0.625	1000mm earth	1000	1.6	0.62
30%	R sum between isothermal p	lanes		2.368	R sum between isotherma	al planes		1.07
Outer Void	Vertical element	t, mm	k	m².K/W	Vertical element	t, mm	k	m².K/V
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.02
	70mm concrete	70	1.44	0.049	70mm concrete	70	1.44	0.04
	2mm polypropylene	2	0.25	0.008	2mm polypropylene	2	0.25	0.00
	260mm reflective air void	260	0.15	1.713	260mm reflective air void	260	0.62	0.42
	Reflecta Under-Slab	0.2	0.2	0.001	Reflecta Under-Slab	0.2	0.2	0.00
	1000mm earth	1000	1.6	0.625	1000mm earth	1000	1.6	0.62
60%	R sum between isothermal planes			2.396	R sum between isotherma	al planes		1.10
	Combined R between isothermal planes (= 1/(A%/Ra + B%/Rb + C%/Rc + D%/Rd)			2.010	1.062			
INTERMEDIATE CALCULATION:			<i>`</i>	winter	summer			
CUPOLEX® H260 Thermal Resistance*, base R =			R2.03	R1.08				
	*combined R with 1 metre ea	rth plus top	60mm c	concrete				
Added R from				winter	summer			
CUPOLEX® H260 + Reflecta Under-Slab			R1.39	R0.44				
				winter	summer			
				R1.57	R0.57			
with bare floor with 6mm carp	et and 15mm underlay			R1.98	R0.98			
-	-	world		R1.73	R0.73			
with 25mm mountain ash floating timber overlay				KI./3	NU.13			

NOTES

Determinations based upon AS/NZS 4859.1&2:2018, Thermal insulation materials for buildings. **Reflecta Under-Slab is a reflective damp-proofing membrane reportedly compliant with AS 2870** If 25mm of extruded polystyrene is used as slab perimeter insulation, edge heat loss will be negligible. This report may not be reproduced except in full. Results may not be quoted without reference to the assumptions. Calculated by James Fricker, F.AIRAH M.IEAust CPEng NER APEC Engineer IntPE(Aus)

Signed:

Jomes Fricker

Calculation updated 27/02/2024 530_B2.xls

ESTIMATION OF THE THERMAL RESISTANCE OF THE CUPOLEX® H200 SYSTEM (with reflective void above Reflecta Under-Slab)

The following uses the isothermal planes method to estimate the resulting combined R from the main thermal paths through the concrete/void CUPOLEX® system.

These values are used in typical Total R calculations to AS/NZS 4859.1&2:2018 (below).

The only insulating elements in the bare CUPOLEX® system are the reflective voids within the cups.

JMF Calc: 530f01c

				WINTER R			SU	MMER R
Centre Post	Vertical element	t, mm	k	m².K/W	Vertical element	t, mm	k	m².K/W
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.021
	230mm concrete	230	1.44	0.160	230mm concrete	230	1.44	0.160
	2mm polypropylene	2	0.25	0.008	2mm polypropylene	2	0.25	0.008
	Reflecta Under-Slab	0.2	0.2	0.001	Reflecta Under-Slab	0.2	0.2	0.001
	1000mm earth	1000	1.6	0.625	1000mm earth	1000	1.6	0.625
2%	R sum between isothermal p	lanes		0.794	R sum between isothermal	planes		0.794
4 Corners	Vertical element	t, mm	k	m².K/W	Vertical element	t, mm	k	m².K/W
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.021
	230mm concrete	230	1.44	0.160	230mm concrete	230	1.44	0.160
	2mm polypropylene	2	0.25	0.008	2mm polypropylene	2	0.25	0.008
	Reflecta Under-Slab	0.2	0.2	0.001	Reflecta Under-Slab	0.2	0.2	0.001
	1000mm earth	1000	1.6	0.625	1000mm earth	1000	1.6	0.625
8%	R sum between isothermal p	lanes		0.794	R sum between isothermal	planes		0.794
Central Void	Vertical element	t, mm	k	m².K/W	Vertical element	t, mm	k	m².K/W
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.021
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.021
	2mm polypropylene	2	0.25	0.008	2mm polypropylene	2	0.25	0.008
	200mm reflective air void	200	0.12	1.639	200mm reflective air void	200	0.47	0.422
	Reflecta Under-Slab	0.2	0.2	0.001	Reflecta Under-Slab	0.2	0.2	0.001
	1000mm earth	1000	1.6	0.625	1000mm earth	1000	1.6	0.625
30%	R sum between isothermal p	lanes		2.294	R sum between isothermal	planes		1.077
Outer Void	Vertical element	t, mm	k	m².K/W	Vertical element	t, mm	k	m².K/W
	30mm concrete	30	1.44	0.021	30mm concrete	30	1.44	0.021
	70mm concrete	70	1.44	0.049	70mm concrete	70	1.44	0.049
	2mm polypropylene	2	0.25	0.008	2mm polypropylene	2	0.25	0.008
	160mm reflective air void	160	0.10	1.574	160mm reflective air void	160	0.38	0.422
	Reflecta Under-Slab	0.2	0.2	0.001	Reflecta Under-Slab	0.2	0.2	0.001
	1000mm earth	1000	1.6	0.625	1000mm earth	1000	1.6	0.625
60%	R sum between isothermal p	lanes		2.256	R sum between isothermal	planes		1.105
	Combined R between isother (= 1/(A%/Ra + B%/Rb + C%	•		1.910	1.055			
		/NC + D /0/F	(u)	winter	summer			
INTERMEDIATE CALCULATION: CUPOLEX® H200 Thermal Resistance*, base R =			R1.93	R1.08				
001	*combined R with 1 metre ea	•			11100			
Added R fro	om			winter	summer			
CUF	POLEX® H200 + Reflec	ta Under	-Slab	R1.29	R0.43			
TOTAL R VAL	LUES, CUPOLEX® H200			winter	summer			
				R1.47	R0.56			
with bare floor				R1.47 R1.88	R0.97			
-	et and 15mm underlay	_						
with 25mm mo	ountain ash floating timber o	overlay		R1.63	R0.72			

NOTES

Determinations based upon AS/NZS 4859.1&2:2018, Thermal insulation materials for buildings. **Reflecta Under-Slab is a reflective damp-proofing membrane reportedly compliant with AS 2870** If 25mm of extruded polystyrene is used as slab perimeter insulation, edge heat loss will be negligible. This report may not be reproduced except in full. Results may not be quoted without reference to the assumptions. Calculated by James Fricker, F.AIRAH M.IEAust CPEng NER APEC Engineer IntPE(Aus)

Signed:

James Fricker

Calculation updated 27/02/2024 530_B2.xls